
Module Catalogue: Computer Science for Digital Media (M.Sc.)

The Master’s degree course in Computer Science for Digital Media lasts 4 semesters and
comprises 120 credit points. Its aim is to prepare students for careers as computer scientists,
with its main focus being on digital media.

The module plan follows the guidelines of the German Society for Informatics for Type 2
degree programs. There are four groupings of modules:

• Advanced Computer Science (8 modules, 48 ECTS in total).
• Electives (18 ECTS).
• Two Reserach Projects (24 ECTS).
• Master Thesis (including initial research and defense).

The Advanced Computer Science group of modules consists of eight mandatory elective
modules. Modules belongs to either of two strains:

• Security and Data Science.
• Graphical and Interactive Systems.

Students are required to choose at least three modules from each strain, as listed in the Table
A below. Two additional modules have to be chosen from either strain, or from modules
marked in the column “Specialization” of Table A below, for example math modules.

• Specialization.

Electives give the students the opportunity to look beyond Computer Science and to study
interdisciplinary aspects. For this purpose, the students can choose modules from all departments
of the Faculty, from any of the other Faculties of the University, and a limited numbers of courses
taught at the Foreign Language Center of the University.

Two Research Projects (12 ECTS each) are conducted either in-house at the Faculty Labs, with
a focus on current research topics in the Computer Science department, or as interdisciplinary
projects jointly with students and staff from other departments or faculties. They are about
deepening relevant specialist skills, but also about the acquisition of soft competences such as
teamwork, project management and presentation skills.

Work at the Master’s Thesis module begins already in the third semester with an initial research
phase. This is followed by a period of four months in which students work on the thesis by
implementing proposed solutions, evaluating them and conceiving and writing the thesis.
Finally, students conclude the module (and their entire master studies) with a Thesis defense,
which includes a presentation in front of faculty members and a question and answer session.

Fig. 1: Graphical illustration of the study course modules

Figure 1 shows a schematic representation of the study course, and shows that the course i built on:
Compulsory Elective Modules (8 compulsory elective moduls of 6 ECTS; 48 ECTS in total)

• Strain “Security and Data Science” (three modules chosen according to Table A)
• Strain “Graphical and Interactive Systems” (three modules as in chosen according to Table A)
• “Specialization” (two modules from either of the above strains or Math courses as marked in

Table A)
Elective Modules / Electives (18 ETCS)
Compulsory Research Projects (2x12 ETCS)
Master Module (30 ETCS)

• Initial Research (6 ETCS)
• Master Thesis (21 ETCS)
• Defense (3 ETCS)

Workload of Research Projects: 12 ETCS ->

12 ECTS 45h in-class-meetings,
315h homework/groupwork (implementation)
Total: 360 hours.

Table A: List of modules and the strains they can be chosen into:

Modules Security
and Data
Science

Graphical &
Interactive
Systems

Electives Specialization

Advanced Analysis x x
Advanced Cryptography:
Cryptographic Hash Functions x x x

Advanced Cryptography:
Secure Channels x x x
Advanced Numerical
Mathematics x x x
Advanced Type Theory for
Functional Programming x x

Complexity Theory x x x
Computer Graphics II:
Animation Systems x x x

Computer Graphics II:
Fundamentals of Imaging x x x
Digital Watermarking &
Steganography x x x

Discrete Optimization x x x

Geometry x x

HCI Theory and Methods x x x
Image Analysis and Object
Recognition x x x

Introduction to Functional
Programming with Haskell x x

Introduction to Machine
Learning and Data Mining x x x
Introduction to Modern
Cryptography x x x

Introduction to Natural
Language Processing x x x

Logics and Semantic Web x x x
Machine Learning for
Software Eng. x x x

Online Computation x x x
Photogrammetric Computer
Vision x x x

Physiological Computing x x x
Quantum Algorithms &
Cryptanalysis x x x

Randomized Algorithms x x x

Search Algorithms x x x

Security Engineering x x x
Software Product Line
Engineering x x x
Spatial Computational
Geometry x x x
Spatial Information Systems
(GIS) x x x

Ubiquitous Computing x x x

Usability Engineering x x x

Virtual Reality x x x

Visualization x x x
Web Search and Information
Retrieval x x x

Group of Compulsory Elective Modules: Advanced Computer Science

Semester
(optional)

Frequency Regularity and
duration

ECTS
credit
points

Workload [hours] Language Group Coordinator

 Every
semester

During the
semester, on a
weekly basis

48 the group consists of eight
modules

for each module, the
workload is as follows:
60 in-class,
80 self-study,
40 exam preparation (incl.
exam).

The total workload for all
eight modules is
8*180=1440 hours.

English Andreas Jakoby for
"Security and Data
Science".

Charles Wüthrich for
"Graphical and
Interactive Systems".

Type and application
of module

Formal requirements for participation Examination requirements

M.Sc.
Computer Science
for Digital Media

Admission to M.Sc. programme
“Computer Science for Digital Media”.

See module descriptions for
further requirements, if any.

The overall grade for all eight modules in this group is calculated
as the weighted mean of the grades obtained in each of the
modules.

See module descriptions for the examination requirements specific
to the modules.

Target qualifications

Students should acquire in-depth knowledge of specific fields taught in the wider field of Security, Data Science, Computer Graphics, and
Interactive Systems. The specific fields are part of specific modules (see below). After completing the modules, students should be able to
undertake original research, or at least independent academic work at the Master’s thesis level in these specific fields. The modules are
organized in two strains: a Security and Data Science strain, and a strain on and Graphical and Interactive Systems. We provide a generic list
of target qualifications for each of the two strains. However, each module has its own specific list of target qualifications.

General Target Qualifications for the Security and Data Science strain

Since the inception of computers and of the Internet, and the following explosion of data generated through digitalization, and data
collection, new and innovative methods had to be developed to store, organize and retrieve information from the sheer mass of data
available. At the same time, issues concerning security arose, causing a significant increase in research in the field of security and
encryption.
Goal of the strain is to develop an understanding of specific advanced topics and current state-of-the art research in these subjects. Students
should

• understand the specific challenges of search and information retrieval, machine learning and cognition
• learn about the specific challenges posed by security and cryptography
• master techniques required to analyse or develop components of intelligent information systems and secure systems
• learn about the application of these techniques to specific problems and tasks
• learn to recognise the advantages of alternative approaches for solving these problems and tasks
• make well-informed decisions about an approach in order to solve problems
• recognise the state of research in a specific sub-field of these field

General Target Qualifications for the Strain on Graphical and Interactive Systems strain

Interactive Systems have become ubiquitous nowadays: they require deep knowledge of computer graphics, visualization and imaging
methods, as well as a deep knowledge of interaction techniques and principles. The goal of the strain is to develop an understanding of
specific challenges and approaches in graphical and interactive systems, from both the graphical and interaction point-of-view. Students
should

• learn about the specific challenges in interaction systems, mobile and ubiquitous computing and/or graphical systems and virtual
reality

• master techniques required to develop graphical applications and interactive, mobile and ubiquitous devices.
• learn about current state of research in one of these fields.
• make well-informed decisions about approaches in order to solve problems or develop new devices and systems.

Contents

See module descriptions.

Didactic concept

Unless otherwise specified in the description of a module: lectures and practical sessions combined with individual and group- based
studies related to theoretical and practical aspects. Practical sessions can include project-oriented and laboratory work based on
concrete problems. Theoretical aspects can include reading, understanding and presenting recent publications. Classes consist of one 90-
minute lecture and one 90-minute practical session per week during the semester. Postdoctoral researchers, doctoral students and
teaching assistants supervise students and are available for intensive discussion and feedback.

Special information

See module descriptions

Modules: ECTS credit points

Strain modules for Security and Data Science and Graphical and Interactive Systems can be chosen as listed in Table A.

All the above modules are compulsory elective:
• Students need to choose eight modules in total,
• including at least three modules from each strain.

The Specialization serves as the placeholder for the two modules the students can choose as listed in Table A.

Goal for the students is to go far beyond their Bachelor degree, and to widen and deepen their scientific knowledge
and expertise. Thus, students must not repeat modules or courses from their Bachelor's programme, and are not
allowed to select modules which mostly overlap with modules/courses from the Bachelor's studies.

• 8 modules
• at least three

modules from each
strain

• 6 ECTS for each
module

• 48 ECTS
in total

Groupable modules for Electives Module number

Semester
(optional)

Frequency Regularity, duration ECTS credit
points

Workload
[hours]

Language Module coordinator

 Every
semester

On a weekly
basis during the
semester

12 360 English (students
may also choose
courses in
German)

examination
committee

Type and application
of module

Formal requirements for participation Examination requirements

Qualification Goals

The module enables students to:

• acquire in-depth knowledge of specialist topics in Computer Science
• broaden their academic knowledge in other fields
• improve their English, or, in the case of non-native speakers, German.

Course Contents

(depends on course(s) chosen)

Didactic Concept

(depends on course(s) chosen)

Special information

Students may choose from the following course types:

1. Master’s courses in Computer Science offered by professors from the Computer Science department.

In the case of a research project offered by a professor from the Computer Science department, students need
the examination committee’s permission to count this project towards their electives module.

2. Non-Computer Science Bachelor’s and Master’s courses offered by professors from other Faculties or other departments of

the Faculty of Media.

A course does NOT fall into this category if parts of the content or some of the qualification goals are typical of
Computer Science, such as programming skills, writing scripts in an executable language, or dealing with the internals
of binary communication protocols. The examination committee can restrict or reject the validity of credit points from
a course if it does not fall into this category.

3. English or German Language courses offered at Bauhaus-University for non-native speakers.

The validity of language courses is limited to a maximum of 6 credit points for the whole electives module.

Upon application the examination committee can allow other courses to be credted for this module.

Lectures / Courses included in the module (optional) SWS / ECTS credit points (optional)

Module Title Research Project I and II Module number

Semester
(optional)

Frequency Regularity and
duration

ECTS
credit
points

Workload [hours] Language Module coordinator

 Every
semester

Over course
of one
semester

12 45h in organized
 meetings/ classes,
315h self-study.
Total: 360h

English Respective
Professorship

Type and application
of module

Formal requirements for participation Examination requirements

M.Sc.
Computer Science
for Digital Media
Can be open to
M.Sc HCI

Admission to M.Sc programme
“Computer Science for Digital
Media”.

See course descriptions for
further requirements, if any.

Completion of a major project task and its documentation, usually
in the form of a scientific report. Specific criteria for evaluation
will be announced in the course catalogue and at the beginning
of the individual project. Quality of the presentation, results
achieved, autonomy in work and creativity are important factors.

Target qualifications

Depending on the type of project, students should have gained practical experience with the design, implementation and evaluation of
advanced software systems and their user interfaces. Students may also have gained practical experience in designing, planning and
running user studies related to specific user interface technologies.

Participants refine their presentation skills via independent literature research based on current publications and presentations on the
various aspects and milestones of the project. An evaluation and documentation of the results in the form of a scientific report completes
the project. As a result of various types of activities involving presentations, participants have experience in presenting and explaining
their work in oral and written form. They understand the importance of project management and organisation for complex projects and
are accustomed to acquiring new skills and knowledge in self-study.

Projects require considerable autonomy from students and develop social and general transferable skills via group work and
independent research (team work, self-organisation, project management).

Contents

Depends on individual topic.

Within the project, students work on research topics in close collaboration with the supervising professors and their research assistants. In
many cases, the projects focus on the design, implementation and evaluation of software systems and their user interfaces with a
particular emphasis on teamwork. Projects may also focus on designing, planning and running user studies related to specific user
interface technologies.

Projects will often produce a body of practical work or a working system, and a scientific report, or may predominantly result in a more
in- depth scientific report.

Didactic concept

Projects confront students with complex problems of scientific relevance and require, as well as develop autonomy and creativity,
problem- solving skills and team work. They are at the core of the Bauhaus tradition of teaching.
Typically, project teams meet once a week with the supervising professors and their research assistants. The majority of effort consists
of autonomous self-study.

Special information

Projects on offer are announced in the teaching catalogue for each semester and presented at the project fair at the start of the semester.

Lectures / courses included in the module (optional) SWS / ECTS credit points (optional)

(none)

Module Title Master‘s Thesis Module Module number

Semester
(optional)

Frequency Regularity and
duration

ECTS credit
points

Workload [hours] Language Module coordinator

 Every
semester

Any time, 4
months

33 790h in self-study,
20h in meetings with the
supervisor,
180h for the defense and
its preparation (1h for the
defense itself).
Total: 990.

English Respective
professorship

Type and application
of module

Formal requirements for participation Examination requirements

M.Sc.
Computer Science
for Digital Media

At least 60 ECTS of the Master’s
programme have to be successfully
completed. English proficiency at C1 level
(CERT).

Written thesis in the style of an academic publication (weight
80%) and a related defence (weight 20%)

Target qualifications

In the thesis, the students prove their ability to perform independent academic work in Computer Science on an adequately challenging
topic within a given time frame. They use established methods or adapt existing approaches while adhering to standards of academic
work. They are given the opportunity to develop, refine and formulate their own ideas and work critically with the literature.

Contents

Depends on individual topic

Didactic concept

The module consists of three phases
• Initial research for the thesis. At the end of the initial research, the topic and time frame are fixed. Duration: about 2-3 months,

in parallel with courses/projects.
• Core research for the thesis. At the end of this phase, the written thesis has to be finished. Duration: 4 months.

• Defense of the thesis. With a few weeks of preparation, the student will present the motivation and the main results from
the thesis.

The students work largely independently, with regular intermediate reporting and consultation with the supervisor.

Special information

The final thesis is the most important part of the module. It describes the results as well as the path that led to these results. The thesis
should be written in the style of an academic publication, whereby the student’s own contribution to the results should be clearly
evident. The evaluation of the thesis comprises a grade for the written thesis (weighted at 80%) and a combined grade for the
presentation and the related defense are (weighted at 20%).

Lectures / courses included in the module (optional) SWS / ECTS credit points (optional)

List of modules

Course/Module Title Advanced Analysis

Coordinator Dr. rer. nat. Dmitrii Legatiuk

Assigned Module Groups(s) Specialization, Electives

Formal requirements for
participation

Analysis (course)

Exam
requirements

Written examination and project

Specific target
qualifications

Many real-world problems lead to mathematical models in the form of partial differential equations. These models
can be transformed into numerical models and used for physically correct simulations, optimizations or parameter
identifications. Students will be provided with the necessary tools to model and solve linear problems.

The course will deal with and understand the following topics:

• basics of ordinary differential equations
• classification of partial differential equations
• partial differential equations and coordinate transforms
• solution of partial differential equation in unbounded domains, initial value problems
• solutions to boundary value problems in bounded domains by series expansions
• modelling of physical processes by help of partial differential equations.

Students should be able to apply the above tools and the theory to solve practical problems. Furthermore,
they should be able to create computer simulations with computer algebra systems.

Students should be able to understand

• the idea of mathematical modelling
• the mathematical assumptions and the resulting restrictions
• how to construct analytical solutions to partial differential equations and analyze them,

in order to solve problems from mathematical physics, mechanics and image processing and create accurate
simulations. They should be able to identify a suitable mathematical model and to adapt it to the given situation
if necessary.

Students should understand special problems at research level and be able to work with them in form of
supervised projects.

Contents • Classification of partial differential equations
• Coordinate transforms, canonical forms
• Analytical solution methods
• Modelling of problems of mathematical physics

Special information Literatur:
Burg/Haf/Wille: Höh. Math. f. Ing., Bde. 3-5,
Taylor: Partial Differential Equations I-III.
Maple

Course/Module Title Advanced Cryptography: Cryptographic Hash Functions

Coordinator Stefan Lucks

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

Basic knowledge of cryptography, either from a “Introduction to Modern Cryptography” or from another
introduction course.

Exami
requirements

Active participation in problem session (minimum 25% of achievable points per problem set). Final oral exam
(max. 45 min.).

Specific target
qualifications

A cryptographic hash function serves as a “fingerprint” to uniquely identify data. The goal of this course is to
understand the principles of designing and analysing cryptographic hash functions, and to apply them to the
context of digital media. The course deals with the following topics:

• the distinction between cryptographic and combinatorial hash functions
• security requirements for cryptographic hash functions such as collision resistance, preimage

resistance and second preimage resistance
• design principles for iterated hash functions
• MD4, its internals and attacks on MD4
• the wider MD4 family of hash functions (including SHA-0, SHA-1, SHA-256, and SHA-512)
• generic attack techniques, such as cycle finding, time-memory tradeoffs, and distinguished points
• block-cipher-based hash functions (single- and double-block)
• number-theory-based hash functions
• tree hashing
• SHA-3 and SHA-3 candidates

The course also considers hash function applications, such as
• password hashing,
• key stretching,
• proofs of work,
• proofs of space, and
• blockchaining

Students should understand the application of hash functions for solving concrete problems and be able
to distinguish secure from insecure designs.

Students should be able to master the following concepts:

• formalising security properties using ideal block ciphers and random oracles
• falsifying security claims by specific attacks
• analysing the security of hash functions
• using hash functions for key-stretching and memory-intense password scrambling

Students should understand the current state of research in cryptography, specifically of the design, analysis and
application of cryptographic hash functions. With appropriate supervision, students should be able to tackle
research problems in cryptography.

Contents • Introduction
• Iterated Hash Functions
• Generic Attacks
• Block-Cipher-Based Hashing
• Dedicated Compression Functions
• Tree Hashing
• The SHA-3 Competition
• Proofs of Work, Proofs of Space
• Password Hashing and Blockchaining

Special information The course is based on recent publications; which will be provided during the semester.

Course/Module Title Advanced Cryptography: Secure Channels

Coordinator Stefan Lucks

Assigned Module Groups(s) Security and Data Science, Specialization, Electives.

Formal requirements for
participation

Basic knowledge of cryptography, either from “Introduction to Modern Cryptography” or from another
introduction course.

Exam
requirements

Active participation in problem session (minimum 25% of achievable points per problem set). Final oral exam
(max. 45 min.).

Specific target
qualifications

A secure channel between two or more participants provides the privacy and integrity of the transmitted data.
The goal of this course is to understand the principles of designing and analysing secure channels. Students
should understand the following topics:

• encryption
• semantic security, find-then-guess security, left-or-right security, real-or-random security
• nonce-based encryption
• authentication
• specific message authentication codes (variants of the CBC-MAC, the PMAC)
• MACs based on universal hash functions and polynomial hashing
• authenticated encryption
• the generic composition of secure encryption and secure authentication
• the handling of associated data for authenticated encryption
• dedicated block-cipher modes for authenticated encryption (OCB, EAX, GCM)
• the failure of insecure modes
• resistance to nonce-reuse
• resistance to the release of unverified plaintexts
• on-line authenticated encryption
• side-channel attacks and leakage resilience

Students should master the design of secure channels from secure components, such as block ciphers, stream
ciphers, MACs or universal hash functions. Students should understand the limits and constraints of the
approaches and formalisms presented in the course. They should know how to distinguish secure from
insecure designs for secure channels.

Students should recognise the following concepts:

• formalising security requirements for secure channels
• analysing existing protocol and channel designs
• the provable security approach in symmetric cryptography
• the implementation of secure channels

Students should develop an understanding of the current state of research in cryptography, specifically in
cryptography as applied to enhance confidentiality and authenticity. With appropriate supervision, students

 Contents • Encryption
• Authentication
• Authenticated Encryption
• Dedicated Schemes
• Robustness
• Side-Channels

Special information Introduction to Modern Cryptography by Mihir Bellare and Phillip Rogaway and recent publications

http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html

Course/Module Title Advanced Numerical Mathematics

Coordinator Dr. rer. nat. Dmitrii Legatiuk

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

Courses: Analysis, Linear Algebra, and Numerical Mathematics

Exam
requirements

Project report and presentation

Specific target
qualifications

The lecture course introduces concepts, algorithms, and theoretical background for the numerical solution
of partial differential equations. The accompanying practical classes are concerned with theoretical, as well as
applied tasks, for expanding students understanding of the field. The theoretical lectures will be completed by
exercises and classes in a computer lab, where the MATLAB will be used as an implementation and simulation
environment.

The course will deal with the following topics:

• numerical linear algebra
• the iterative solution of linear and non-linear systems of algebraic equations
• discretization and numerical solution of ordinary and partial differential equations
• finite difference method
• approximation, stability and convergence
• error estimates
• implementation of concrete problems in MATLAB and their analysis

Students should be able to apply the above tools and the theory to solve practical problems. Furthermore,
they should be able to implement the algorithms discussed in the course in MATLAB and perform computer
simulations.

Students should be able to understand

• the role of discretization methods in mathematical modelling of engineering problems
• how to create a system of linear algebraic equation by using finite difference method
• how to apply numerical algorithms for solving systems of linear equations
• how to improve the efficiency of a numerical method

in order to solve practical problems from mathematical physics and engineering. The students should be
able to adapt standard models to the given situation if necessary.

Contents • Numerical linear algebra

• Discretization of ordinary and partial differential equations
• Finite difference method, approximation, stability, and convergence
• Numerical simulations

Special information Literatur:
Varga, Matrix iterative analysis.
Hermann, Numerische Mathematik
Kress, Numerical Analysis
Matlab

Course/Module Title Advanced Type Theory for Functional Programming

Coordinator Dr. rer. nat. Dmitrii Legatiuk

Assigned Module Groups(s) Specialization, Electives

Formal requirements for
participation

No specific requirements for this course

Exam
requirements

Submission of a project given during semester with weight of 50% of total grade. The project has to be
presented at the final oral examination (max. 30 min) with a time for preparation (max. 30 min).

Specific target
qualifications

Type theory is a solid part of modern programming languages. Development of new concepts and understanding
principles of programming languages require a careful consideration of types and their role in programming.
Functional programming is a paradigm in which type theory is naturally included via formalism of typed versions
of lambda calculus. Another modern formalism closely related to functional programming and type theory is
category theory, which is, in simple terms, the abstract theory of functions. Haskell is an example of a modern
programming language in which both concepts come naturally together. The goal of this course is to present
advanced topics in functional programming related to type and category theories.

Students should understand the following topics:

• basics of category theory
• Cartesian closed categories
• the relationship between typed lambda calculus and category theory
• polymorphism
• type inference and type checking
• type operators and higher-order polymorphism
• functors and monads in Haskell.

Students should be able to apply the above tools and theories to solve concrete problems. Furthermore,
they should appreciate the limits and constraints of the above theories.

Students should be able formalize and generalize their own solutions using the above

topics. Students should master concepts and approaches such as
• thinking in an abstract manner
• understanding abstract mathematical background of functional programming
• learning advanced functional programming

in order to tackle problems from programming and its application to digital media. They should be able to
understand proposed programming problems, to make well-informed decisions about the preferred proposal
and, if necessary, to find their own solutions to given programming problems.

Students should develop an understanding of the current state of research in type theory and functional
programming. With appropriate supervision, students should be able to tackle research problems.

Contents • Category theory
• Typed versions of lambda calculus
• Polymorphism
• Type checking

Special information B. Pierce, Basic category theory for computer scientists
B. Pierce, Types and programming languages
Haskell Platform

Course/Module Title Complexity Theory

Coordinator Andreas Jakoby

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

Formal Languages

Exam
requirements

Final oral exam (max. 45 min.).

Specific target
qualifications

Complexity theory deals with methods to analyse the solvability of problems and the classification of
the problems according to the required complexity resources. Based on this goal diffened complexity
classes and the relations between this classes are analysed. The aim of this module is to understand
the basic concepts of complexity classes and the major techniques to analyse problems with the aim
to get a classification of intractability of solvability of the problem.

Students should understand the major techniques to analyse concrete problems. They should
be able to distinguish efficiently solvable and intractability.

Students shall master the following concepts:
• complexity measures and classes

• NP-hardness reductions
• analysing the efficiency of algorithms and circuits
• finding gap-versions of a problem to show non-approximability
• analysing the circuit complexity of problems in NC_1 and AC_0

Students should understand the current state of research in complexity theory, specifically of the
design analysis and application of efficient algorithms and the complexity analysis of concrete

Contents The course deals with the following topics:

• general complexity measures
• time and space
• circuit depth and size
• Turing-machine model
• universal Turing-machine
• main techniques to work with Turing-machines
• Bachmann-Landau notation
• complexity classes L, NL, P, NP, PSPACE, NPO, APX, PTAS, FPTAS, NC, AC, P/ploy
• tape reduction
• Sacitch’s Theorem, Immerman–Szelepcsenyi Theorem
• hierarchies and universal languages
• many-one reduction (polynomial time and logarithmic space)
• linear reducibility
• properties of reductions
• completeness and hardness
• clique, independent set, vertex cover, versions of satisfiability, Hamiltonian cycle, CVP, QBF,

graph isomorphism, reachability, knapsack, TSP, maximization/minimization versions of
several problems

• gap versions of several problems
• probabilistically checkable proofs, PCP-theorem
• non-approximability
• (non)-uniform circuit families
• sensitivity
• general bounds for circuits
• relativizing proofs and oracle Turing-machines
• relativizing proof for P=NP and for P=/=NP

Special information Jakoby: Lecture slides
Papadimitriou: Computational Complexity (Addison Wesley, 1993)
Garey, Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness
(W.H. Freeman and Company, 1979)
Reischuk: Komplexitätstheorie Band I: Grundlagen: Maschinenmodelle, Zeit- Und
Platzkomplexität, Nichtdeterminismus (Teubner Verlag, 1999)
Sipser: Introduction to the Theory of Computation (Wadsworth Publishing Co Inc, 2012)
Wegener: Theoretische Informatik - eine algorithmenorientierte Einführung (B.G. Teubner
Verlag, 1999)
Goldreich: Computational Complexity: A Conceptual Perspective (Cambridge University
Press, 2008)
Baier, Asteroth: Theoretische Informatik (Pearson Studium, 2002)
Hopcroft, u.a: Introduction to Automata Theory, Languages, and Computation (Addison-
Wesley Longman, 2006)

Course/Module Title Computer Graphics II: Animation Systems

Coordinator Charles Wuethrich

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Conception and submission of a computer animation. Algorithm study. Final exam.

Specific target
qualifications

Computer animations and animation systems have achieved quite widespread use. This course has a double
aim; to allow students to understand the algorithm and modelling techniques used in common high level
animation systems, and at the same time be able to appreciate the hard work involved in the production
process of a computer animation.

Successful students in this course should understand and be able to program the underlying algorithms and
physics used in a 3D-animation program and to cooperate with artists and designers on a common 3D-
animation project, which might involve the programming of plug-ins for the animation system. At the end of
the course, they should have mastered the conception, design and implementation of 3D-animation software.

Contents Contents:
• Animation Principles.
• Interpolation, Spline families.
• Motion Control, Arc length in 3D-curves, Time-Velocity-Acceleration, SLERP, Quaternions.
• Deformations, Topology, Genus of Surfaces, Morphing, 3D-Morphing.
• Kinematics, Inverse Kinematics, Jacobians, Solving Kinematics with the Aid of the Jacobian.
• Physics 101: Linear and Angular Physical Equations, Mass-Spring Systems, Navier Stokes

Equations, Motion equations in Animation. Solution Methods for Differential Equations.
• Collision Detection, Computing Collision Response.
• L-Systems. Natural Phenomena: plants, particles, water, flocks, intelligent agents, clouds, fire.
• Animal and Human animation: walking, running, jumping.
• Motion Tracking, Fitting Tracked Data to 3D-Models.

Special information Literature:
Rich Parent, “Computer Animation: Algorithms and Techniques”, Morgan Kaufman, 2007

Course/Module Title Computer Graphics II: Fundamentals of Imaging

Coordinator Charles Wuethrich

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Presentation, discussion, implementation and submission of imaging algorithms. Final exam.

Specific target
qualifications

Modern Digital Imaging Devices are ubiquitous nowadays. The goal of this course is to understand the
principles of imaging and to be able to conceive, design and implement systems relevant for imaging.

Students should understand the following topics:

• The physics of optics and its associated quantities, light and radiometry, geometrical optics and lenses.
• Human vision, photometry, colorimentry, color spaces.
• Photographic rules, composition, aperture, field of view.
• Analog and digital capturing devices, light sensors.
• Advanced methods and functions for assessing image quality.
• Enhancing algorithms to overcome and correct capturing shortcomings.
• Factors leading to imaging quality.

At the end of the course, they should have mastered the conception, design and implementation of imaging
software for both generic digital light sensors and digital photography.

Contents Contents:
• Light and Radiometry.
• Human Vision, Photometry, Colorimentry. Advanced Color Spaces.
• Geometrical Optics and Lenses. Optical Equations for Lens Systems.
• Photographic Composition, quantities used in photography.
• Analog Photography.
• Digital Sensors.
• Image Enhancing, Debayering, Filtering, Edge Enhancement.
• Image Quality Assessment.
• Use of Fourier, Cosine and Wavelet Transforms in Imaging.

Special information Literature:
 - Lee, “Introduction to Color Imaging Science”, Cambridge University Press, 2009.
 - Wong, Bovik, “Modern Imaging Quality Assessment”, Morgan Claypool, 2006.
 - Fu, “Color Imaging. Fundamentals and Applications”, AK Peters, 2008.

Course/Module Title Digital Watermarking & Steganography

Coordinator Andreas Jakoby

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Final oral exam (max. 45 min.).

Specific target
qualifications

A digital watermarking and steganography deals with hiding additional information in digital data such
as audio data or pictures. The main goal of digital watermarking is to embed information about the
content of data within the content, for instance copyrights. Steganography, on the other hand, deals
with the aspect of hiding the existence an embedded message. The goal of this course is to understand
the principles of designing and analysing schemes for digital watermarking and steganography, and to
apply them to the context of digital media. The course deals with the following topics:

• the distinction between cryptography, digital watermarking, and steganography
• the distinction between application areas for cryptography, digital watermarking, and

steganography
• design principles for information hiding within multimedia data
• properties of areas and digital values within multimedia data for information hiding
• tools for measuring the quality of information hiding systems (including Watson’s DCT-

based visual model)
• basic transformations from image processing (including DCT, FFT, wavelet transformation)
• JPEG-compression

• using the LSB for information hiding
• statistical test to detect embedded information within the LSBs (including 2-test)
• information-theoretically secure embedding scheme

• practical embedding schemes (including OutGuess and F5)
• PRNG based on linear recurrences, linear feedback shift registers, the security of a crypto

system, and on the computational difficulty of mathematical problems (including the
generator of Blum, Blum, Shup)

• linear codes (including Reed-Muler code)
• the distinction between informed and blind systems
• attacks (including calibration and Markov process based features)
• robustness test for digital watermarks (including JPEG compression with different compression

rates, stirmark attack, averaging filter, noise, row and column exchange)
• rightful ownership problems and schemes to solve them
• copy attack and schemes to solve the corresponding problem
• audio watermarking

Students should understand the application of digital watermarking and steganography for
solving concrete problems. They should be able to distinguish secure from insecure designs.

Students shall maser the following concepts:

• falsifying security claims by specific statistical tests
• analyzing the security of stego systems
• analysing the robustness and security of digital watermarks
• using digital watermarks to solve copy right problems
• using PRNG and linear coding theory to reduce embedding distortion

Students should understand the current state of research in digital watermarking and steganography,
specifically of the design, analysis and application of schemes for digital watermarking and
steganography. With appropriate supervision, students should be able to tackle research problems in

Contents • Introduction
• Applications and Properties of digital Watermarking
• Applications and Properties of Steganography
• Basic Notations
• Theoretical Observations on Steganography
• A Model for Steganography
• Information-Theoretically Secure Steganography
• Computationally Secure Steganography
• Cachin’s Definition of Steganographic Security
• Basic Transformations from Image Processing
• The Embedding Distortion
• The Perceptual Model
• Watson’s DCT-based visual model
• Building Blocks of a Steganographic Algorithm
• Information-Theoretical Foundations of Steganography
• Practical Steganographic Methods
• Statistics Preserving Steganography
• Statistical Tests
• The OutGuess Algorithm – Preserving DCT Statistics
• Pseudorandom Number Generators
• Model-Based Steganography
• Masking Embedding as Natural Processing
• The F5 Embedding Algorithm
• Minimizing the Embedding Impact
• Some Notes on Linear Codes
• Feature-Based Steganalysis
• Communication-Based Models of Watermarking
• Simple Informed Watermark System for 1-Bit Payload
• Spread-Spectrum Approach
• Strength of the Similarity Measure
• Extension to Blind Detection
• Experimental Analysis of Robustness
• Security of Watermarking
• Feature-Based Approach
• Audio-Watermarking and Echo Hiding
• Rightful Ownership Problem: Single Public Watermarked Image
• Invertible and Noninvertible Schemes
• Rightful Ownership Problem: Multiple Public Watermarked Image

Special information Jakoby: Lecture slides
I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, T. Kalker, Digital Watermarking and
Steganography (Second Edition), Korgan Kaufmann, 2008.
Octave or Matlab will be used in the Lab

Course/Module Title Discrete Optimisation

Coordinator Andreas Jakoby

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Final oral exam (max. 45 min.).

Specific target
qualifications

Discrete optimisation is about finding optimal solutions for discrete problems. Finding efficient
algorithms for discrete optimisation problems is one of the main topics in algorithm design. The goal of
this course is to understand the principles of analysing discrete optimisation problems and designing
efficient algorithms for such problems.

Students should understand the following topics and methods:

• discrete optimisation problems and complexity theory
• heuristic and local search strategies for optimisation problems
• backtracking for discrete optimisation problems
• branch-and-bound schema
• convex optimisation problems and linear programming
• Simplex-Algorithm and Ellipsoid-Algorithm
• greedy algorithms
• approximability of concrete problems
• tree decomposition and dynamic programming

Students should be able to apply the above concepts to solve concrete problems. Furthermore, they
should appreciate the limits and constraints of the above schemes. Students should be able formalise and
generalise their own solutions using the above tools.

Students should master concepts and approaches such as

• analyzing the intractability of discrete optimisation problems
• using different algorithmic concepts to design efficient algorithms for discrete optimisation

problems
• using transformations to solve optimisation problems
• knowing the limits of efficient optimisation algorithms
• using approximations to find adequate solutions
• knowing that input of a specific form can be solved efficiently by dynamic programming

in order to tackle optimisation problems. They should understand the current state of research in
discrete optimisation, specifically of the design, analysis and application of schemes for
optimisation problems. With appropriate supervision, students should be able to tackle research
problems in discrete optimisation.

Contents • Introduction
• Heuristic Search - a general algorithm for search problems
• Heuristic Search - best first search
• Best First Search with Duplicate Elimination
• The A∗ ∗ -algorithm
• Backtracking for Discrete Optimisation Problems
• Knapsack Problem, Traveling Salesperson Problem, MAXCLIQUE Problem
• General Backtracking Strategy
• Backtracking with Bounding Function
• Branch-and-Bound Schema
• Alpha-Beta-Search for 2-Party-Games
• Local Search
• Hopfield neural networks
• Maximum-Cut Approximation via Local Search
• Application to Vertex Cover
• Local Search for Discrete Optimisation Problems
• The Metropolis Algorithm and Simulated Annealing
• Linear Programming
• Complexity of Linear Programs
• Geometry of Linear Programs
• Basic Feasible Solution
• The Simplex-Algorithm
• The Ellipsoid-Algorithm
• Affine Transformations and Ellipsoids
• Precision of Computation
• Greedy Algorithms and Bounds on the Optimum: a load balancing problem
• Greedy Algorithms and Knowing the Optimum: the center selection problem
• A First Step to the Pricing Method: the Set Cover Problem
• Approximations via Reductions: the Vertex Cover Problem
• The Pricing Method for the Vertex Cover Problem
• Arbitrary Good Approximations: the Knapsack Problem
• An Introduction to Linear Programming and Rounding: Vertex Cover revisited

Special information Jakoby: Lecture slides
T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press, 1990
J. Kleinberg, E. Tardos, Algorithm Design, Addison Wesley, 2005
W. Kocay, D. Kreher, Graphs, Algorithms and Optimisation, CRC 2005
D. Kreher, D. Stinson, Combinatorial Algorithms, CRC Press, 1999
C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimisation: Algorithms and Complexity, Dover
Books on Computer Science, 2000

Course/Module Title Geometry

Coordinator Reinhard Illge

Assigned Module Groups(s) Specialization, Electives

Formal requirements for
participation

(No specific requirements for this course)

Exam
requirements

.Active participation in problem session: solving at least two problems identified in the session and presenting the
solutions on the blackboard. Final oral exam (max. 45 min.).

Specific target
qualifications

One of the defining features of mathematics, already formulated in ancient Greece, is to achieve truth by proof,
to find laws by logical conclusions. This approach was explained in Euclid`s Elements and completed by David
Hilbert in his book “Grundlagen der Geometrie”. The goal of this course is to present synthetic geometry as a
prime example for the systematic development of a theory, based on a few axioms.

Students should understand the following topics:

• the set-up of a geometry based on logical conclusions requires some basic truth called axioms
• proof of propositions by applying (only) the already known principles
• the concept of coordinates without the use of length and angular measurement
• the generation of the complete set of congruence maps in the plane by a single type of maps

(line reflections)
• possibilities for classifying motions
• generalising the congruence maps into similarity maps by adding central similarities
• the study of different types of symmetries and their relation to certain finite groups
• identifying the special cases where a commutative law applies
• the study of some properties of figures in the plane and the space
• presentation of the idea of the Golden Ratio, which is widespread in nature, art, and architecture
• study of the Archimedes procedure to calculate the circumference as the probably oldest

numerical algorithm

Students should be able to apply the above tools and topics for solving concrete problems. Furthermore,
they should appreciate the limits and constraints of the above, e.g that the change of the parallel axiom
leads to another, Non-Euclidean geometry.

Students should be able to formalise and generalise their own solutions using the above

tools. Students should master concepts and approaches such as
• a strict use of the style of thinking known as deduction
• solving some practical tasks using geometrical methods (e.g. certain minimal problems)
• solving some construction tasks using only ruler and compass
• the strong set-up of a theory by logical structures
• navigation using modern means such as GPS, based on long-standing geometric ideas

in order to tackle problems from geometry and its application to digital media. They should be able to
understand proposed geometrical problems, to make well-informed decisions about the preferred proposal
and, if necessary, to find their own solutions to given geometrical problems.

Students should develop an understanding of the current state of research in Geometry.

Contents • Axiomatic Approach to Euclid´s Geometry
• Congruence Maps (motions)
• Similarity Maps
• Plane Figures
• Spatial Figures

Special information

Course/Module Title HCI Theory and Methods

Coordinator Eva Hornecker

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of HCI at bachelor level from a suitable previous degree

Exam
requirements

.Submission of practical project- and problem-based coursework in combination with presentations and technical
discussions.

Group assignments require students to apply methods and approaches in practical empirical research projects, to
apply theoretical concepts to practical problems and tasks, and to work with and critically reflect on the literature.
A final, individual assignment consists of a larger individual project (an empirical study), where students are to
apply the learned skills and knowledge to a self-chosen problem area and to report on their study in the style of
an academic publication. Submission of practical project- and problem-based coursework in combination with
presentations and technical discussions.

Specific target
qualifications

Students should have an understanding of the difference between quantitative and qualitative methods. They
should master core HCI qualitative research methods for understanding and analysing human interaction with
technology and know relevant HCI theories. They should be aware of how the role of theory in HCI has
expanded from the early days of human factors and mathematical modeling of behaviour to include
explanatory and generative theories, which reflect influences from fields such as design, sociology and
ethnography.

Students should know how to apply core HCI methods to novel (and real-world) problems and tasks. Students
should be able to run studies using appropriate data gathering or evaluation techniques and methods, in
particular, qualitative methods (e.g. interviews, observation, contextual enquiry, diary studies), to adapt and
adjust these in light of the given research question and use context, and to justify research method and study
design. They should understand and be able to discuss complex HCI issues from the research literature for
emerging areas of human-computer interaction and be able to engage with the literature and acquire other
methods independently. With appropriate supervision, students should be able to tackle research problems.

In addition, social and general transferable skills are trained via group work in the classes, based on concrete
problems and tasks.

Contents Example contents are:
• Role of Theory in HCI, the History of HCI theory and Method Use
• General Styles of HCI Research Methods (qualitative and quantitative)
• Experimental Study Design and Statistical Analysis
• Interviews, Questionnaires, Observational Methods and other approaches
• Ethnography and Field Studies
• Data Analysis for Qualitative Studies

Special information Introductory Literature:
• Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research Methods in Human-

computer Interaction. Wiley
• Judith S. Olson, Wendy A. Kellogg (eds.) Ways of Knowing in HCI. Springer 2014
• Yvonne Rogers. HCI Theory. Classical, Modern, and Contemporary. Morgan & Claypool Publishers 2012
• Ann Blandford, Dominic Furniss, Stephann Makri. Qualitative HCI Research. Going behind the

scenes. Morgan and Claypool Publishers 2016

Course/Module Title Image Analysis and Object Recognition

Coordinator Prof. Dr.-Ing. Volker Rodehorst

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of computer science at bachelor level

Exam
requirements

Successful completion of the exercises and a project.
Final written examination.

Specific target
qualifications

The course gives an introduction to advanced concepts of image processing, image analysis and object
recognition. The goal is to understand the principles, methods and applications of computer vision from image
processing to image understanding.
Students should learn the following topics:

• image representation and enhancement
• morphological and local filter operators
• corner and edge detection
• filtering in frequency domain
• shape detection with generalized Hough transform and Fourier descriptors
• object recognition with Viola-Jones, SIFT-based voting and implicit shape models
• segmentation and clustering of image regions
• deep learning for visual recognition
• pattern recognition methods and strategies

Students should be able to apply the above topics to solve computer vision problems. Furthermore, they should
appreciate the limits and constraints of the above topics.
Students should be able formalize and generalize their own solutions using the above concepts of image
processing, image analysis and object recognition.
Students should master concepts and approaches such as

• application-specific feature extraction
• generation, learning and application of models for object recognition
• data-driven and model-driven processing strategies

in order to tackle computer-vision problems and their application to digital media. They should be able to
understand proposed image analysis methods, to compare different proposals for object recognition systems, to
make well-informed decisions about the preferred proposal and, if necessary, to find their own solutions to
given computer vision problems.
Students should develop an understanding of the current state of research in image analysis and object
recognition. With appropriate supervision, students should be able to tackle research problems.

Contents Sample contents are:
• Image processing
• Feature extraction
• Shape detection
• Object recognition
• Image regions
• Machine learning

Special information Literature:
• V. Rodehorst: lecture notes, online.
• B. Jähne: Digital image processing, Springer, 2005.
• R.C. Gonzalez and R.E. Woods: Digital image processing, Pearson, 2018.
• R. Szeliski: Computer vision: algorithms and applications, Springer, 2020.
• D. Forsyth and J. Ponce: Computer vision: a modern approach, Pearson, 2012.
• R.O. Duda, P.E. Hart and D.G. Stork: Pattern classification, Wiley, 2000.
• C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.

Course/Module Title Introduction to Functional Programming with Haskell

Coordinator Dr. rer. nat. Dmitrii Legatiuk

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

No specific requirements for this course

Exam
requirements

Submission of a project given during semester with weight of 50% of total grade. The project should be presented
at the final oral examination (max. 30 min) with time for preparation (max. 30 min).

Specific target
qualifications

Functional programming is a modern programming paradigm based on lambda calculus and recursive functions
as model of computation. A program in functional programming is a function in a strong mathematical sense, and
the output of a program is application of the function to its arguments. Haskell is a brilliant example of a well-
designed programming language illustrating all the advantages of functional programming. The goal of this
course is to present basic concepts of the functional paradigm and their realization in Haskell.

Students should understand the following topics:

• syntax of pure lambda calculus
• reduction order and normal forms
• evaluation strategies for lambda terms
• typing rules and typing relations
• syntax of simply-typed lambda calculus
• relation between simply-typed lambda calculus and propositional logic
• syntax of Haskell
• use of lists in Haskell
• types and type classes
• higher order functions
• creating own modules in Haskell

Students should be able to apply the above tools and theories to solve concrete problems. Furthermore, they
should appreciate the limits and constraints of the above theories, e.g. limitations of pure lambda calculus
and the need for types.

Students should master concepts and approaches such as
• thinking functionally
• understanding the mathematical background of functional programming
• reasoning about their programs

in order to tackle problems from functional programming and their application to digital media. They should be
able to understand proposed programming problems, to make well-informed decisions about the preferred
proposal and, if necessary, to find their own solutions to given programming problems.

Students should develop an understanding of the current state of research in functional programming. With
appropriate supervision, students should be able to tackle research problems.

Contents • Pure lambda calculus
• Simply-typed lambda calculus
• Curry-Howard isomorphism
• Evaluation strategies

Special information Literature:
R. Bird, Thinking Functionally with Haskell
Haskell Platform

Course/Module Title Introduction to Machine Learning

Coordinator Benno Stein

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirement for this course)

Exam
requirements

Active participation in lab classes. Final written exam.

Specific target
qualifications

Given a task and a performance measure, a computer program (and hence a machine) is said to learn from
experience if its performance at the task improves with experience. In this course, students will learn to
understand machine learning as a guided search in a space of possible hypotheses. The mathematical means of
formulating a particular hypothesis class determines the learning paradigm, the discriminative power of a
hypothesis, and the complexity of the learning process.

Students should understand the following concepts and theories:

• model functions and hypothesis spaces
• model formulation and model bias
• unrestricted versus linear decision boundaries
• input spaces versus feature spaces
• how domain space structures determine learning approaches
• means to specify loss and regularization objectives
• discriminative versus generative learning approaches
• statistical learning approaches

Students should be able to formalize real-world classification tasks as machine learning problems. They should
be able to apply the above mentioned concepts and theories to solve concrete learning problems. In particular,
they should be able to choose the appropriate learning paradigm within a concrete setting.

Students should master concepts and approaches such as

• classifier programming
• classifier application
• classifier evaluation

in order to tackle machine learning problems and their application to digital media. They should be able to
analyze machine learning problems, to compare different learning algorithms, and to make well-informed
decisions about the preferred learning paradigm.

Students should develop an understanding of current developments in machine learning. With
appropriate supervision, they should be able to tackle research problems.

Contents • Model Formation
• Concept Learning
• Performance Evaluation
• Linear Models
• Neural Networks
• Support Vector Machines
• Decision Trees
• Statistical Learning
• Learning Theory
• Principles of Deep Learning

Special information Course material: https://lecturenotes.webis.de/#machine-learning
Tools: Weka, scikit-earn, R, SciPy, GNU Octave
Literature:

• C.M. Bishop. Pattern Recognition and Machine Learning
• T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning
• T. Mitchell. Machine Learning
• P.N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining

https://lecturenotes.webis.de/#machine-learning

Course/Module Title Introduction to Modern Cryptography

Coordinator Stefan Lucks

Assigned Module Groups(s) Security and Data Science

Formal requirements for
participation

(none)

Exami
requirements

Active participation at problem session (minimum 25% of achievable points per problem set), and solving one
individual assignment. Final oral exam (max. 45 min.).

Specific target
qualifications

Cryptography is about communication in the presence of adversaries. The lecture introduces students to the
design and analysis of cryptographic systems. Because one needs to understand how systems fail, before one
can design and implement better systems, there is also a focus on cryptographic attacks.

Students should be able to give examples for

• classical cryptosystems (Caesar cipher, substitution cipher, …),
• password-based security, and the application of entropy to estimate password-strength
• stream ciphers (One-Time Pad, …),
• abstract block ciphers and their formal analysis,
• practical block ciphers (DES, AES) and differential cryptanalysis,
• block cipher modes of operation (ECB, CBC, …) and their strengths and weaknesses,
• message authentication codes and their strength and weaknesses,
• public-key cryptosystems (RSA, Rabin, Diffie-Hellman),
• attacks on complex cryptosystems, and
• provably secure cryptosystems and proofs.

Students should master basic ideas of the art and science of cryptography, such as

• how to formally model security requirements
• how to design stream and block ciphers
• how to use stream or block ciphers for secure authentication and encryption
• how to design public-key cryptosystems
• how to use public-key cryptosystems for key exchange and digital signatures

Specifically, for a given cryptosystems and a given application

• students should deduce if the cryptosystem is secure for that application or not,
• if secure, students should be able to argue why it is secure,

and, if insecure, students should be able to argue why it is insecure (typically by presenting an attack on the
cryptosystem)

Contents • Introduction

• Passwords

• Stream Ciphers

• Block Ciphers

• Security Challenges & Attacks

• Asymmetric Cryptosystems

• Insecure Cryptosystems from Secure Bulding Blocks
• Provable Security

Special information Students need a decent knowledge about Mathematics, especially Discrete Mathematics, for this course.

Students who did already take an introduction to cryptography must not take part at this lecture, and are
excluded from the exams. To verify this condition, students must present copies of their "transcripts of
records" from previous studies, when applying for the exam.

On the other hand, students who did not take an introduction to cryptography, previously, must first take this
course and pass the exam before they are allowed to take part at lectures on Advanced Cryptography, such as
Secure Channels and Cryptographic Hash functions.

Course Title Introduction to Natural Language Processing

Coordinator Benno Stein

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

 Formal requirements for

participation
(no specific requirement for this course)

Exam
requirements

Active participation in lab classes. Final written exam.

Specific target
qualifications

The course gives an overview of basic techniques of working with language data. It will introduce basic
linguistic notions, issues involved in building and working with language corpora, current standard techniques
for preparing text for analysis, and methods of computational processing of a subset of language phenomena.
As part of practical lab classes, the students will get hands-on experience with language processing
technology.

Students should understand the following concepts and theories:

• the basics of language processing
• background on selected elements of language processing theory
• practical considerations

Students should get an understanding of key word-level, syntactic, semantic, and discourse phenomena, and
be aware of issues involved in building text corpora.

Students should master concepts and approaches such as

• implement and apply NLP algorithms in practice
• perform tasks that are part of a standard NLP pipeline
• enable comparative evaluations
• being able to educate oneself

in order to assess the challenges and difficulties when solving natural language processing. They should
be able to analyze language technologies, to compare different NLP algorithms, and to make well-
informed decisions about the possibilities and limits of important NLP algorithms.

Students should develop an understanding of current developments in natural language processing.
With appropriate supervision, they should be able to tackle research problems.

Contents • NLP Problems
• Corpus Linguistics
• Words
• Syntax
• Semantics
• Pragmatics
• NLP Architectures

Special information Course material: https://lecturenotes.webis.de/#natural-language-processing
Literature:

• D. Jurafsky, J. H. Martin. Speech and Language Processing
• C. D. Manning, H. Schütze. Foundations of Statistical Natural Language Processing

https://lecturenotes.webis.de/#natural-language-processing

Course/Module Title Logics and Semantic Web

Coordinator Benno Stein

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirement for this course)

Exam
requirements

Active participation in lab classes. Final written exam.

Specific target
qualifications

The first part of this lecture course (two-thirds) introduces the notions and methods of formal logic, covering
propositional logic, predicate logic and the foundations of automated deduction. Based on this, the second part
of the lecture explains the inference concepts behind the semantic web. Students should understand the
following concepts from logics:

• Propositional and predicate logics:

◦ inductive formation of formulae

◦ satisfiability
◦ logical entailment
◦ equivalence of syntax and semantics

◦ correct and sound calculi
• Semantic Web

◦ RDF syntax

◦ modeling and inference

Students should be able to employ logics as a modeling tool. They should understand and be able to explain
the concept of entailment and how to automate theorem proofing. Based on these insights, they should be
able to explain the working principles of the semantic web, to model knowledge-based relations and to
encode them using an OWL variant.

Students should master

• semantic approaches to logical entailment
• syntactic approaches to logical entailment
• RDF as a language for logics in the web
• an OWL variant (light, DL, full)

in order to model semantic relations in web-based applications.

Students should develop an understanding of the current developments of the semantic web, as well as its
possibilities and its limits and constraints. With appropriate supervision, they should be able to tackle
research problems.

Contents • Propositional Logic:
• syntax
• semantics
• formula transformation

• satisfiability algorithms
• Predicate Logic:

• syntax
• semantics
• formula transformation
• satisfiability algorithms

• decidability
• Semantic Web

• RDF
• RDF schema

• Ontologies

Special information Course material: http://www.uni-
weimar.de/en/media/chairs/webis/teaching/lecturenotes/#logics Literature:

• Cori/Lascar. Mathematical Logic
• Fensel. Spinning the Semantic Web
• D. W. Loveland. Automated Theorem Proving: A Logical Basis
• Powers. Practical RDF

http://www.uni-weimar.de/en/media/chairs/webis/teaching/lecturenotes/#logics
http://www.uni-weimar.de/en/media/chairs/webis/teaching/lecturenotes/#logics

Course/Module Title Machine Learning for Software Engineering

Coordinator N.N.

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Active participation in programming tasks (minimum 50% of achievable points across all tasks). Final oral
exam (max. 45 min.).

Specific target
qualifications

Nature-Inspired Machine Learning (NiML) is about learning and optimising complex tasks that are
computationally intractable for exact methods. The goal of this course is to understand the principles of meta-
heuristics in optimisation, as well as key concepts of learning based on neural nets.

Students should understand the following techniques and theories:

• problem space exploration and search-based optimization
• meta-heuristics for optimization
• the relationship between biological learning and optimisation with algorithms
• neural nets and deep learning

Students should be able to apply the above theories to solve concrete learning and optimisation
problems. Furthermore, they should appreciate the limits and constraints of the individual methods
above.

Students should be able formalise and generalise their own solutions using the above concepts and
implement them in a specified language (preferable in Python).

Students should master concepts and approaches such as:

• simulated annealing
• swarm optimization
• ant colonization
• evolutionary algorithms
• sampling and experimental designs
• dimensionality reduction
• neural nets
• deep learning

in order to tackle the difficulty of learning and optimising huge problems inherent to digital media. They
should also be able to implement the algorithms and techniques in Python and be able to understand a
proposed problem, to compare different approaches and techniques regarding applicability and accuracy, to
make well- informed decisions about the preferred solution and, if necessary, to find their own solutions.

Students should develop an understanding of the current state of research in optimisation and learning. With

Contents Contents:
• Structure of the Search Space and General Search Techniques
• Simulated Annealing and Ant Colonization
• Swarm Optimization
• Evolutionary Algorithms
• Dimensionality Reduction and Sampling
• Neural Nets
• Deep Learning.

Special information

Course/Module Title Online Computation

Coordinator Andreas Jakoby

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Final oral exam (max. 45 min.).

Specific target
qualifications

Online computation is a model for algorithms and problems which require decision under uncertainty. In
an online problem, the algorithm does not know the entire input from the beginning; the input is revealed
in a sequence of steps. An online algorithm should make its computation based only on the observed past
and without any secure knowledge about the forthcoming sequence in the future. The effects of a
decision taken cannot be undone.
The goal of this course is understanding the principles of designing and analysing schemes for online
computations and for competing online problems. The course deals with the following topics:

• basic concepts for analysing the competitive ratio (including potential function,
factoring and partitioning techniques)

• various concrete online algorithms (including MTF, BIT, RMTF for the list-accessing problem
and LRU, CLOCK, LFU, LFD, RAND, MARK for the paging problem)

• locality of request sequences (e.g. use of the access graph model or Markov chains)
• extensive versus strategic forms of games
• strategy forms for games and their connections to online problems
• equivalence theorems for linear games
• request-answer systems with respect to different types of adversaries
• competitive analysis and zero-sum games
• Yao’s principle for obtaining lower bounds

Students should understand the application of competitive analysis for solving concrete problems. They
should be able to distinguish efficient from inefficient solutions.

Students should master concepts and approaches such as

• analysing the competitive ration of concrete online algorithms using the potential method
• analysing the competitive ration of concrete online algorithms using factoring and phase

partitioning
• analysing the competitive ration of concrete online algorithms using game theory
• knowing how to analyse different online problems with respect to oblivious and adaptive

adversaries
• knowing how to analyse online problems using the minimax theorem

in order to tackle problems from online computation and competitive analysis. They should be able to
understand proposed competitive analysis problems, to compare different proposals for online
computations, to make well- informed decisions about the preferred proposal and, if necessary, to find
their own solutions to given online problems.

Students should develop an understanding of the current state of research in online computation and
 l h d h ld b bl kl h bl

Contents • Some Basic Concepts: optimization problems, competitive ratio, games and adversaries
• The Potential Function Method: amortized costs, interleaving moves
• The List-Accessing Problem
• The Sleator-Tarjan Result for MTF
• Some Lower Bounds for the List Accessing Problem
• The List-Factoring Technique
• The Phase-Partitioning Technique
• competitive ratio of randomised algorithms
• Randomised Algorithms and the List-Accessing Problem: BIT and RMTF
• Phase Partitioning and the BIT-Algorithm
• Algorithm COMB
• The Paging Problem
• Some Deterministic Paging Algorithms
• The Full Access Cost Model
• Adversary Models
• Some Randomised Paging Algorithms: Rand and Mark
• Locality and the Paging Problem
• LRU in the Access Graph Model
• The FAR Algorithm
• Distributional Paging and the Markov Chain Model
• Game-Theoretic Foundations
• 2-Person games
• Extensive and Strategic Form of Games
• Randomised Strategies for Games
• Mixed, behavioral and general strategies
• Equivalence Theorems for Linear Games
• Memoryless Behavioral Paging Algorithm
• Memoryless Mixed Paging Algorithm
• Request-Answer System - adversaries and their interaction with algorithms
• Request-Answer System - the competitive ratio
• 0-sum games

Special information Jakoby: Lecture slides
Allan Borodin, Ran El-Yaniv, Online Computation and Competitive Analysis, CAMBRIDGE
UNIVERSITY PRESS, 2005

Course/Module Title Photogrammetric Computer Vision

Coordinator Prof. Dr.-Ing. Volker Rodehorst

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of computer science at bachelor level

Exam
requirements

Successful completion of the exercises and a project.
Final written examination.

Specific target
qualifications

The course gives an introduction to the basic concepts of sensor orientation and 3D reconstruction. The goal is an
understanding of the principles, methods and applications of image-based measurement.
Students should learn about the following topics:

• homogeneous representation of points, lines and planes
• planar and spatial transformations
• estimation of relations using a direct linear transformation (DLT)
• modeling and interpretation of a camera
• optical imaging with lenses
• epipolar geometry and multi-view tensors
• global bundle adjustment
• robust parameter estimation
• image-matching strategies

Students should be able to apply knowledge of the above topics to solve photogrammetric problems.
Furthermore, they should appreciate the limits and constraints of the above topics. Students should be able
formalize and generalize their own solutions using the above concepts of sensor orientation and 3D
reconstruction.
Students should master concepts and approaches such as

• algebraic projective geometry
• reconstruction and inversion of the imaging geometry
• the correspondence problem

in order to tackle problems in photogrammetry and its application to digital media. They should be able to
understand proposed sensor orientation problems, to compare different proposals for image-based 3D
reconstruction systems, to make well-informed decisions about the preferred proposal and, if necessary, to find
their own solutions to given problems in photogrammetry. Students should develop an understanding of the
current state of research in photogrammetric computer vision. With appropriate supervision, students should be
able to tackle research problems.

Contents Sample contents are:
• Image-based 3D reconstruction
• Homogeneous coordinates
• Algebraic projective 2D and 3D geometry
• Camera calibration
• Sensor orientation using multi-view geometry
• Stereo image matching

Special information Literature:
• V. Rodehorst: lecture notes, online.
• W. Förstner and B.P. Wrobel: Photogrammetric Computer Vision – Statistics, Geometry, Orientation

and Reconstruction, Springer, 2016.
• R. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision, 2. Edition,

Cambridge University Press, 2003.
• O. Faugeras and Q.-T. Luong: The Geometry from Multiple Images, MIT Press, 2004.
• R. Szeliski: Computer vision: algorithms and applications, Springer, 2020.

Course/Module Title Physiological Computing

Coordinator Jan Ehlers

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of HCI at bachelor level from a suitable previous degree

Exam
requirements

Submission of lab reports as a prerequisite to attend the written exam.

Group work during small laboratory experiments requires the students to apply the acquired theoretical and
methodological knowledge. Overall aim is to determine cognitive/affective states on basis of selected
psychological and physiological variables, to create references and to test the validity of these measures.
Therefore, students need to conceive experimental designs, deal with aspects of measurement technology and
critically reflect upon operational definitions. Empirical findings are to be evaluated statistically, discussed in
accordance with literature findings and documented in lab reports

Specific target
qualifications

The course introduces to theories and methods of physiological computing. The students will acquire basic
knowledge on the human central and peripheral nervous system; they will be familiarised with the idea of user-
state representations and computer systems that dynamically adapt to changes in implicit information which
underly our psychological conditions (level of mental workload, states of affective processing). The students will
learn about the psychophysiological concept of bodily arousal and develop a broad understanding of non-invasive
recording devices and sensor technologies (e.g. video-based eye-tracking, EEG recordings). They will be prepared
to differentiate between features of various physiological measures, including electrophysiological patterns (EEG),
thermoregulatory responses (skin conductivity, skin temperature), cardiovascular changes (heart-rate variabilities),
oculomotor reactions (gaze movements, cognitive pupillometry) and muscle activity (grip force). During mental
status determination, students will be put in the position to reasonably balance between physiological and
psychological measures, to combine them and to carefully select adequate methods depending on research
objectives and psychological constructs. Also, students will gain the ability to quantify physiological sample data
records via time series and frequency analyses, evaluate relevant features statistically (response latencies,
gradients, amplitudes, recovery times) and discuss the results against the backdrop of current models and theories.

Furthermore, students will be introduced to sensorimotor principles that constitute our body scheme and will
become familiarized with established techniques to connect the brain/body to a machine through extending
boundaries of the nervous system (Brain-Computer Interfaces, Bio-/Neurofeedback). They will learn about the
concept of embodiment, acquire knowledge to critically reflect upon possibilities and limitations of neuroadaptive
interfaces and become aware of the application possibilities of recent developments in Neuroprothetics.

Lectures will be completed with labs that provide the opportunity to independently collect and analyse
physiological activity. Standardised scenarios and controlled experimental settings will enable students to apply
the acquired knowledge and reflect upon measuring (in)accuracies, artifacts, individual reaction patterns and
habituation effects.

Contents • Physiological computing: Theories & methods
• The central & peripheral nervous system
• Mental status determination: Cognitive & affective user states
• Sensorimotor activity & body scheme (extensions)
• Eye-tracking: Gaze analysis & Cognitive Pupillometry
• EEG (spontaneous rhythms, event-related potentials) & Brain-Computer Interfaces
• (Neuro)adaptive Interfaces & Neuroprothetics
• Muscle activity, grip force & pressure measurement
• Skin conductance, skin temperature & cardiovascular measures
• Biofeedback: Theories & applications
• Measuring devices & sensor technology
• Signal analysis: Time series analysis frequency analysis Special information Literature:

• Picard, R. W. (2000). Affective computing. MIT press.
• Fairclough, S. H. (2010). Physiological computing: interfacing with the human nervous system.

In Sensing emotions (pp. 1-20). Springer, Dordrecht.
• Fairclough, S. H., & Gilleade, K. (Eds.). (2014). Advances in physiological computing. Springer

Science & Business Media.
• O. Faugeras and Q.-T. Luong: The Geometry from Multiple Images, MIT Press, 2004.
• R. Szeliski: Computer vision: algorithms and applications, Springer, 2020.

Course/Module Title Quantum Algorithms & Cryptanalysis

Coordinator Stefan Lucks

Assigned Module Groups(s) Security and Data Science, Specialization.

Formal requirements for
participation

(none)

Exam
requirements

Active participation at the problem session (minimum 25% of achievable points per problem set). A final oral
exam (at most 45 min.).

Specific target
qualifications

The computational model of a quantum computer is fundamentally different from the classical model of
computation. Quantum computers can solve certain problems efficiently, which, to the best of our knowledge,
are infeasible on a classical computer. E.g., Shor’s celebrated period-finding algorithm, can be used to factorise
huge numbers and compute discrete logarithms in huge groups, thus breaking almost all currently used
asymmetric cryptosystems. Such exploits assume ECLSQ (Error-Correcting Large-Scale Quantum) computers,
which will not be available for many years (if ever). Nevertheless, with the current advent of the first NISQ
(“Noisy Intermediate- Scale Quantum”) computers, it becomes increasingly important for computer scientists –
and especially for cryptographers – to understand how quantum computers work, what quantum computers can
do, and what quantum computers can’t do.

The students will master the following topics:

• The fundamental difference between a classical state and a quantum state.
• Operations over quantum states, modeled as linear operations over the complex numbers.

• Basic quantum algorithms, such as
• amplitude Amplification and Grover’s algorithm to “find a needle in a haystack”,
• the quantum Fourier transform and Shor’s factorization method.

• The application of basic quantum algorithms to quantum cryptanalysis:
• symmetric key-recovery in time 2**(n/2) using Grover’s algorithm,
• hash collisions using Grover’s algorithm in time 2**(n/3),
• factorization and discrete logarithm using Shor’s method.

• The polynomial method in quantum complexity theory.
• Post-quantum asymmetric cryptography.
• Quantum error correction.

The students will understand

• The quantum model of computation.
• Its application to design and analyse quantum algorithms.
• The application of such algorithms to cryptanalysis.
• Some of the limits of quantum computers.

The students will conceive knowledge about the state of research in quantum algorithms, with a focus on the
application to quantum cryptanalysis. Given some guidance, they will be able to tackle current research problems
in quantum cryptanalysis

Contents • classical bits, quantum bits, classical states, and quantum states
• quantum gates and quantum circuits
• quantum key exchange
• Deutsch’s problem and Simon’s problem
• Grover’s amplitude amplification: how to find a needle in a haystack
• the application of Grover’s algorithm to symmetric cryptanalysis
• quantum Fourier analysis and Shor’s algorithm for period finding
• the application of period finding to asymmetric cryptanalysis
• lower bounds: the limits of quantum computing
• symmetric cryptanalysis: Grover’s algorithm and beyond
• post-quantum asymmetric cryptography
• quantum error correction

Special information Students are required to understand Mathematics (namely Linear Algebra, Complex Numbers, and
Probability Theory) and Theoretical Computer Science (Complexity Theory).

N. David Mermin: Quantum Computer Science: An Introduction
John Preskill: Quantum Computing in the NISQ era and beyond <https://arxiv.org/abs/1801.00862>

Special information Introduction to Modern Cryptography by Mihir Bellare and Phillip Rogaway and recent publications

http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html
http://cseweb.ucsd.edu/%7Emihir/cse207/classnotes.html

Course/Module Title Randomised Algorithms

Coordinator Andreas Jakoby

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Final oral exam (max. 45 min.).

Specific target
qualifications

For many problems, randomised algorithms are the only known efficient solution method. For some
other problems we can find randomised algorithms that are much simpler and more understandable
than any known deterministic method. The goal of this course is to understand the principles of
designing and analysing randomised algorithms. The course deals with the following topics:

• basic concepts and inequalities from probability (including Chernoff bounds, Markov’s,
Chebyshev’s, and Jensen’s inequality)

• various randomised algorithms (e.g. for verifying matrix multiplication, sorting, computing
the median, cut problems, packet routing, hashing, satisfiability, Hamiltonian cycles,
independent sets, K4- subgrapaph problem, etc.)

• average-case analysis of algorithms
• balls and bins
• random graphs
• basic probabilistic methods
• Lovasz Local Lemma
• derandomisation
• Markov chains

Students should be able to apply the above tools, algorithm, and concepts to solve concrete
problems. Furthermore, they should appreciate the limits and constraints of the above topics.
Students should be able formalise and generalise their own solutions using randomization.

Students should master concepts and approaches such as

• using the principle of deferred decisions to analyse randomised algorithms
• decreasing error probability by running randomised algorithms multiple times
• distinguishing between Las Vegas and Monte Carlo algorithms
• using the moment-generating function and Chertoff bounds for analysing the tail probabilities
• using the balls and bins model to solve concrete problems and analyse randomised algorithms
• using randomised graphs to analyse the average complexity of hard problems
• using basic probabilistic methods to solve problems
• knowing how to apply Lovasz Local Lemma to analyse hard problems
• knowing techniques for derandomisation based on probabilistic methods

Students should understand the current state of research in randomised algorithms, specifically of the
design, analysis and application of randomised algorithms. With appropriate supervision, students should
be able to tackle research problems in randomised algorithms.

Contents • Some Notes on Probability
• Verifying Matrix Multiplication
• A Randomised Min-cut Algorithm: Karger’s min-cut algorithm
• A Randomised Version of Quicksort
• Coupon Collector’s Problems
• A Randomised Algorithm for Computing the Median
• Types of Randomised Aalgorithms: Las Vegas versus Monte Carlo
• Randomised Computational Complexity Ttheory
• Moment-Generating Functions and Cherno ffBounds (versions for independent Poisson trials)
• Estimating Probability from Samples
• Packet Routing in Sparse Networks (including bit-fixing routing mechanism hypercubes)
• Balls and Bins
• Applications for Balls and Bins: bucket sort, hashing with bit strings, Bloom filters, breaking

symmetry
• Models for Random Graphs
• Hamiltonian Cycles in Random Graphs
• Basic Probabilistic Methods
• The Counting Argument and Edge Coloring
• The Expectation Argument
• Applications for Probabilistic Methods: maximum satisfiability, finding a large cut
• Derandomisation Using Conditional Expectations and Finding a Large Cut
• Applications for Sample and Modify: independent sets, graphs with large girth
• The Second Moment Method and Applications for Threshold Behaviour in Random Graphs
• Conditional Expectation Inequality and Applications for K4-Subgraph Problem

• Lovasz Local Lemma
• Lovasz Local Lemma and Application to Edge-Disjoint Paths
• Lovasz Local Lemma and Application to Satisfiability
• Explicit Constructions Using the Local Lemma
• Explicit Constructions for Satisfiability
• Lovasz Local Lemma: the General Case
• Markov Chains
• A Randomised Algorithm for 2-Satisfiability

Special information Jakoby: Lecture slides
Michael Mitzenmacher, Eli Upfal, Probability and Computing - Randomised Algorithms and
Probabilistic Analysis, CAMBRIDGE UNIVERSITY PRESS, 2005

Course Title Search Algorithms

Coordinator Benno Stein

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirement for this course)

Exam
requirements

Active participation in lab classes. Final written exam.

Specific target
qualifications

The course will introduce search algorithms as a means of solving combinatorial problems such as constraint
satisfaction and optimization problems. Tackling such problems by machine often follows a two-step approach:
(1) definition of a space of solution candidates followed by (2) intelligent exploration of this space. We will
cover the modeling of search problems, basic (uninformed) search algorithms, informed search algorithms, as
well as hybrid combinations. Special focus will be placed on heuristic search approaches.
Students should understand the following concepts and theories:

• state space versus problem reduction space
• uninformed search
• weight functions
• cost measures
• informed search
• admissibility of search algorithms
• search monotonicity and consistency

Students should be able to model a search space by selecting the appropriate representation principle and by
devising encoding for partial solution bases. They should understand and describe how different search
algorithms will explore the search space differently. With regard to informed search algorithms, they should
understand the principle of admissible search and be able to prove basic properties of the search algorithms
(completeness, soundness, admissibility).

The students will learn to analyze the nature of search problems, this way being able to

• devise adequate search space representations
• (heuristically) inform an uninformed strategy
• develop admissible search strategies
• combine informed with uninformed strategies
• prove important properties such as admissibility or monotonicity.

Students should eventually be able to tackle non-trivial search and constraint satisfaction problems and their
application to digital media. In this regard, they should be able to make well-informed decisions and explain
their approach to finding solutions, considering the theoretical background. With appropriate supervision,
students should be able to tackle research problems.

Students should develop an understanding of the current developments of the semantic web. With
appropriate supervision, they should be able to tackle research problems.

Contents • Search Examples
• Search Space Representations
• Algorithms for Uninformed Search
• Hybrid Search Algorithms
• Algorithms for Informed Search
• Theoretical Properties of Search Algorithms

Special information Course material: https://lecturenotes.webis.de/#search
Literature:

• Edmund K. Burke, Graham Kendall. Search Methodologies
• Nils J. Nilsson. Artificial Intelligence: A New Synthesis
• Judea Pearl. Heuristics
• Stuart Russel, Peter Norvig. Artificial Intelligence: A Modern Approach

https://lecturenotes.webis.de/#search

Course/Module Title Security Engineering

Coordinator Stefan Lucks

Assigned Module Groups(s) Security and Data Science, Specialization, Electives.

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Active participation in problem session: solving at least two problems identified in the session and presenting
at least one solution. Final oral exam (max. 45 min.).

Specific target
qualifications

Safety is about systems running reliably under normal and exceptional circumstances. Security is about
systems defending themselves against malicious manipulation and attacks. The goal of this course is to
provide an introduction to the specific skills and the mindset which the designers of such systems need.

Students should understand the following tools and theories:

• the programming languages Ada and SPARK
• various strategies for white-box and black-box testing
• preconditions, postconditions and invariants
• the Hoare logic
• data-flow analysis, information-flow analysis and the static verification of pre- and postconditions
• the theory of distributed and failure-tolerant systems
• algorithms for failure-tolerant distributed systems

Students should be able to apply the above theories and tools to solve concrete problems.
Furthermore, they should appreciate the limits and constraints of the above theories and tools.

Students should be able formalise and generalise their own solutions using the above tools and

theories. Students should master concepts and approaches such as
• systematic testing
• design by contract
• static verification
• formal models for failure modes (fail-stop, Byzantine)
• algorithms for failure-tolerant distributed system

in order to tackle problems from safe and secure system development and its application to digital media.
They should be able to understand proposed solutions to safety and security problems, to compare
different proposals for safe and secure systems, to make well-informed decisions about the preferred
proposal and, if necessary, to find their own solutions to given safety and security problems.

Students should be able to apply formal methods in practical settings. Specifically, students should be
demonstrate their ability to formaly specify software properties, to implement such software, and to verify
their implementation. In the lab, the SPARK toolset will be used.

Contents • An Introduction to the Ada Programming Language

• Software Testing

• Design by Contract

• The Hoare Logic

• The SPARK Specification and Programming Language

• Distributed Systems

• The Concept of Tasks in Ada

• The Development of Failure-Tolerant and Reliable Systems
• Formal Language Theory for Security

Special information Participants will need compilers for the Ada and SPARK programming languages (gnat, gnatprove), for the
generation of automatic tests (testgen or AUnit) and for test covereage evaluation (gcov, lcov). All these tools
are available at no cost under GPL.

Course/Module Title Software Product Line Engineering

Coordinator N.N.

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements for this course)

Exam
requirements

Active participation in programming tasks (minimum 50% of achievable points across all tasks). Final oral
exam (max. 45 min.).

Specific target
qualifications

Modern Digital Imaging Devices are ubiquitous nowadays. The goal of this course is to understand thNature-
Inspired Machine Learning (NiML) is about learning and optimising complex tasks that are computationally
intractable for exact methods. The goal of this course is to understand the principles of meta-heuristics in
optimisation, as well as key concepts of learning based on neural nets.

Students should understand the following techniques and theories:

• problem space exploration and search-based optimization
• meta-heuristics for optimization
• the relationship between biological learning and optimisation with algorithms
• neural nets and deep learning

Students should be able to apply the above theories to solve concrete learning and optimisation
problems. Furthermore, they should appreciate the limits and constraints of the individual methods
above.

Students should be able formalise and generalise their own solutions using the above concepts and
implement them in a specified language (preferable in Python).

Students should master concepts and approaches such as:

• simulated annealing
• swarm optimization
• ant colonization
• evolutionary algorithms
• sampling and experimental designs
• dimensionality reduction
• neural nets
• deep learning

in order to tackle the difficulty of learning and optimising huge problems inherent to digital media. They
should also be able to implement the algorithms and techniques in Python and be able to understand a
proposed problem, to compare different approaches and techniques regarding applicability and accuracy, to
make well- informed decisions about the preferred solution and, if necessary, to find their own solutions.

Contents Contents:
• Software Product Lines and Variability Modeling
• Run-Time and Load-Time Variability
• Preprocessors
• Components and Frameworks
• Aspect-Oriented Programming
• Feature-Oriented Programming
• Aspects v. Features
• Analysis of Configurable Systems
• Non-Functional Properties of Configurable Systems.

Special information

Course Title Spatial Computational Geometry

Coordinator Bernd Fröhlich

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of algorithms and data structures at bachelor level from a suitable previous degree

Exam
requirements

Coursework in combination with a final exam (written or oral).
Exam duration: 30-45 minutes (oral) or 90-150 minutes (written)..

Specific target
qualifications

The goal of this course is to provide students with the theoretical and applied foundations for the design and
analysis of efficient algorithms for problems involving geometric input and output. The course focuses on real-
time problems in 2D- and 3D-graphics and visualization applications.

Students should understand the following constructs, techniques, algorithms and efficient data structures:

• Convex hulls
• Plane sweep and segment intersection computations
• Point localization
• Doubly-connected edge list data structures
• Range searching
• Window searching
• Voronoi diagrams
• Delaunay triangulation
• Ray queries

Students should be able to implement the above algorithms and data structures to solve concrete problems.
Furthermore, they should be able to analyse the complexity of the algorithms and data structures.

Contents • Introduction
• Fundamentals
• Convex Hulls
• Plane Sweep and Segment Intersections
• Point Localization
• Doubly-Connected Edge List
• Range Searching
• Window Searching
• Voronoi Diagrams
• Delaunay Triangulation
• Ray Queries

Special information This course is partially based on the book “Computational Geometry, Algorithms and
Applications” by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars.
Further references will be provided throughout the course.

Course/Module Title Spatial Information Systems (GIS)

Coordinator Prof. Dr.-Ing. Volker Rodehorst

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

no specific requirement for this course

Exam
requirements

Successful completion of the exercises and a project.
Final written examination.

Specific target
qualifications

The students can use the topics below to solve spatially related problems. They are able to formalize and
generalize their own solutions by applying the concepts of geospatial data acquisition, organization, analysis and
presentation. Students will be able to realize the conceptual design and realization of a GIS, the collection of
subject-specific geospatial data as well as the application for location-based services, geo-marketing and strategic
site planning in order to address problems of spatial information systems and their application to digital media.
They should be able to understand the proposed concepts, to compare different proposals for GIS systems, to
make well-informed decisions about the preferred proposal and, if necessary, to find their own solutions to given
problems with spatial reference. Students should develop an understanding of the current state of research in
spatial information systems. With appropriate supervision, students should be able to tackle research problems.

Contents The course covers advanced basics of spatial information systems (GIS), such as acquisition, organization, analysis
and presentation of data with spatial reference. The lab classes and the individual project lead to a deeper
understanding of GIS workflows, tools and extensions and should turn knowledge into practice. The core topics
are:

• Acquisition of spatial data
• Data types and dimensions of geo-objects
• Primary and secondary spatial reference
• Coordinate reference systems and map projections
• Acquisition of geospatial base data and available online resources

• Spatial data management
• Object-relational database management systems
• Efficient tree-structures for spatial data

• Object-oriented data modeling
• Graphical GIS modeling in UML
• 3D city models

• Spatial data analysis
• Spatial interpolation and analysis of vector-based geo-objects
• Route planning and traveling salesperson problem

• Presentation of spatial data
• Cartographic visualization and generalization

• GIS applications

Special information Literature:

• V. Rodehorst: lecture notes, online.

• M. de Smith, M. Goodchild, D. Longley: Geospatial Analysis, 2009.

• R. Bill: Grundlagen der Geo-Informationssysteme, 6. Edition, Wichmann, 2016.

• N. Bartelme: Geoinformatik – Modelle, Strukturen, Funktionen, 4. Edition, Springer, 2005.
• N. de Lange: Geoinformation in Theorie und Praxis, 2. Edition, Springer, 2006.

Course/Module Title Ubiquitous Computing (UbiComp)

Coordinator Eva Hornecker

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of HCI at bachelor level from a suitable previous degree

Exam
requirements

Submission of practical project- and problem-based coursework in combination with presentations and
technical discussions.

Group assignments require students to apply methods and approaches in practical empirical research projects,
to apply theoretical concepts to practical problems and tasks, and to work with and critically reflect on the
literature. A final, individual assignment consists of a larger individual project (an empirical study), where
students are to apply the learned skills and knowledge to a self-chosen problem area and to report on their
study in the style of an academic publication. Submission of practical project- and problem-based coursework
in combination with presentations and technical discussions.

Specific target
qualifications

Students should have an understanding of theoretical, applied and technical foundations of modern
ubiquitous computing systems. They should understand how such Ubicomp systems work on a technical
level and also understand their societal relevance. They should know about the technical and social-design-
related challenges in developing such systems. They should be able critically to assess societal implications
and discuss design trade-offs. They should be able to develop concepts for novel UbiComp applications, to
determine their technical feasibility, and to reflect critically on their feasibility in an application context.
Moreover, they should be able to apply a user-centered approach in the design process of UbiComp
applications.

Students should understand and be able to discuss complex issues from the HCI and UbiComp research
literature for emerging areas of UbiComp. They should be able to engage with, to summarize literature and
to critique it. With appropriate supervision, students should be able to tackle research problems.

In addition, social and general transferable skills are trained via group work in the classes based on
concrete problems and tasks

Contents • Contents:
• History of Ubicomp Systems
• Different Views of UbiComp
• Sensing, Tracking and Monitoring Technology, Location Sensing
• Interface Types: mobile, tangible, touch interfaces
• The Internet of Things
• Prototyping and Research Methods in the UbiComp Field
• Modern User Interfaces for Ubicomp Systems
• Role of the Use Context
• User-Centered Design for Development of Novel Technologies, e.g. UbiComp
• Societal, Ethical and User-Research Issues for Novel Technologies

Special information Introductory Literature:
• Ubiquitous Computing Fundamentals. Ed. John Krumm. ISBN: 1420093606. Chapman & Hall/CRC

2009.
• Harper, Rodden, Rogers, Sellen (eds.). Being Human: Human-Computer Interaction in the Year 2020.

Microsoft Research Ltd 2008
• Rowland et al. Modern User Interfaces for Ubicomp Systems. O’Reilly 2015

Course/Module Title Usability Engineering and Testing

Coordinator Jan Ehlers

Assigned Module Groups(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of HCI at bachelor level from a suitable previous degree

Exam
requirements

Submission of written study reports as a prerequisite to attend the written exam.
Group work addresses selected problems from the field of Usability Engineering and testing and requires students
to apply the acquired theoretical and methodological knowledge during different practical tasks. In particular,
students need to draw on their skills from the Usability Engineering Lifecycle by designing user-centered
interaction concepts during iterative developmental phases. Good usability/user experience needs then to be
tested by applying user-studies featuring carefully selected evaluation techniques. Results are to be analyzed
statistically and documented by reflecting it against relevant findings in literature.

Specific target
qualifications

Students are introduced to theories and methods in the field of usability engineering to acquire a profound
understanding of human interaction with modern ubiquitous computing systems. They learn about quality
attributes that constitute good usability, in order to carry out design decisions during iterative development and
to be able to improve interactive systems. Special emphasis is put on human factors, students will be able to draw
on theories from cognitive psychology, they will develop awareness for social-design-related challenges and gain
the ability to create customized solutions that ensure optimal accessibility for various user groups.

To assess interactive systems for usability and user experience, students are given insights into the
methodology of usability testing. They learn to weight the advantages and disadvantages of different
evaluation techniques, adapt them against the backdrop of context-specific challenges and to apply
appropriate implementation choices. Furthermore, students gain fundamental knowledge to develop scientific
hypotheses, to conceive and design experimental studies and to independently perform quantitative data
analyses (both descriptive and inferential) on the basis of parametric/non-parametric statistical procedures.

Lectures are accompanied by labs that link theoretical knowledge with application-oriented tasks. Addressing
selected problems of Usability engineering/testing in both laboratory and naturalistic settings, students will apply
the acquired knowledge and learn to critically reflect upon test environments, group compositions as well as
confounding variables.

Contents • Usability and User Experience (UX)
• Usability heuristics
• Human factors: Psychological, physiological & motor determinants
• Usability Engineering: Prerequisites & requirements
• Usability Engineering: Theories & methods
• The Usability Engineering Lifecycle
• Interaction/participatory design, accessibility & (specific) user groups
• Dark patterns & hostile design/architecture
• Usability Testing: Theories & methods
• Study designs, experimental procedures & sampling
• Quantitative data analyses - descriptive & inferential statistical methods
• Field experiments & lab studies Special information Literature:

• Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.
• Dumas, J. S., Dumas, J. S., & Redish, J. (1999). A practical guide to usability testing. Intellect books.
• Hartson, R., & Pyla, P. S. (2012). The UX Book: Process and guidelines for ensuring a quality user

experience. Elsevier.

Course Title Virtual Reality

Coordinator Bernd Fröhlich

Assigned Module(s) Graphical and Interactive Systems, Specialization, Electives

Formal requirements for
participation

Basic knowledge of HCI and Computer Graphics at bachelor level from a suitable previous degree

Exam
requirements

Coursework in combination with a final exam (written or oral).
Exam duration: 30-45 minutes (oral) or 90-150 minutes (written)..

Specific target
qualifications

The goal of this course is to provide students with the theoretical, technical and applied foundations of
modern virtual reality systems, 3D Cinema, stereoscopic gaming and 3D user interfaces.

Students should understand the following concepts, techniques and technical systems:
• Scenegraph technology
• Viewing in 3D
• 3D perception
• Stereoscopic single- and multi-viewer display technology
• Three-dimensional user interfaces and interaction techniques

Students should be able to apply the above concepts, techniques and their knowledge of technical
solutions for solving concrete problems. Furthermore, they should be able identify and discuss the main
usability factors of 3D interaction techniques, 3D interfaces and 3D display technology.

In order to tackle problems from the virtual reality domain, students should master concepts and
approaches such as

• Computing stereoscopic projection parameters for various technical setups

• Designing a scenegraph-based interactive virtual reality application that supports multiple users
• Selecting navigation, selection and manipulation techniques for specific use cases
• Using Fitts’s law and the steering law to evaluate the performance of designs in selection and

navigation tasks
• Design and parametrization of transfer functions for the different types of sensors and tasks

Students should develop an understanding of the fundamentals and the current state of research in virtual
reality and make well-informed decision in this context. They should be able to discuss research problems,
implement and adapt current approaches, perform basic evaluations and understand the limitations of the
solutions.

In addition, social and general transferable skills are trained via group work in the lab classes based on
concrete problems and tasks.

Contents Main contents are:

• Stereoscopic Viewing
• Graphics and Scenegraph Basics
• Viewing Setups in Scenegraphs
• 3D User Interface Basics
• 3D Navigation, selection and manipulation
• 3D Manipulation
• 3D Input Devices
• 3D Display Technology Basic
• Stereoscopic Multi-User Display Technology
• Interaction and Collaboration in Multi-User Virtual Reality
• Introduction to Augmented/Mixed Reality

Special information This course is mostly based on recent research publications. References will be provided throughout the
course.

Course Title Visualization

Coordinator Bernd Fröhlich

Assigned Module Groups(s) Electives

Formal requirements for
participation

Basic knowledge of HCI and computer graphics at bachelor level from a suitable previous degree

Exam
requirements

Coursework in combination with a final exam (written or oral).
Exam duration: 30-45 minutes (oral) or 90-150 minutes (written).

Specific target
qualifications

In this course, students develop an understanding of the basic mathematical, algorithmic and technical methods
and procedures for the representation of and interaction with measured, simulated or collected data. They can
select, adapt, implement and evaluate these for new problems.
 • Students are able to abstract at different levels:
 ◦ Problem abstraction: translation of the problem from a specific application domain into the
 visualization vocabulary.
 ◦ Data abstraction: What is to be visualized?
 ◦ Task abstraction: Why do users want the data visualized?
 • You know a wide range of basic visualization techniques and how they are structured
 ◦ Visual coding: How is the data represented?
 ◦ Interaction techniques: How to customize the view of the data and how to combine
 different views.
 • Students are able to analyze and abstract data from an application domain and systematically
 select suitable visualization techniques and combine them with appropriate interaction
 techniques.
 • They will also be able to apply their knowledge to challenging and more complex problems
 and assess the scalability of the selected techniques.
 • The lab class enables students to develop, implement and test basic visualization
 techniques themselves.
In addition, social and general transferable skills are trained via group work in the lab classes based on concrete
problems and tasks.

Contents • Information Visualization
• Munzner’s What-Why-How Framework Analysis
• Basic Interaction Techniques
• Visualization Techniques for tabled data, temporal data, trees, cartography data and text.

• Scientific Visualization
• Data types and mathematical basics
• Isolines and isosurfaces
• Direct volume visualization through ray-casting
• Multiresolution methods for volume data-driven
• Flow visualization

Special information Introductory literature:
• R. Spence: Information Visualization: An Introduction (3rd Edition)
• T. Munzner: Visualization Analysis and Design

This course is mostly based on recent research publications. References will be provided throughout the course.

NOTE: This course is available only to students that have not had a Visualization course in their previous degree

Course Title Web Search and Information Retrieval

Coordinator Benno Stein

Assigned Module Groups(s) Security and Data Science, Specialization, Electives

Formal requirements for
participation

(no specific requirements)

Exam
requirements

Active participation in lab classes. Final written exam.

Specific target
qualifications

Web search engines and information retrieval today have the world’s information at the users’ fingertips.
Research from the last few decades now helps users to find what they want for a variety of information needs in
a split second. The goal of this course is to understand how search engines and IR systems work, to acquire the
necessary theoretical background that enables comprehension of practical considerations, and to develop an
understanding of comparison and evaluations issues. Limits and constraints and latest trends are part of the
curriculum.

The students should understand the following topics:

• the relationship of information retrieval and web search
• indexing process (offline) and query process (online)
• crawling large collections with storage issues and up-to-date checks
• text-processing techniques, including subtleties of parsing, stopping, stemming and anchor texts
• PageRank concept and algorithm
• NLP techniques for information extraction
• MapReduce technique for index creation
• various types of inverted indexes
• index-compression concepts for efficiency
• information need vs. query formulation
• techniques for transforming and improving human queries
• comprehending components of result presentation
• mathematical models of relevance
• distinguishing probabilistic retrieval models from language modeling approaches
• machine learning techniques for improving ranking
• Cranfield paradigm for evaluating retrieval performance
• effectiveness and efficiency metrics for retrieval systems

Students should be able to apply the above theories and topics to solve concrete problems in the field of
retrieval systems. Furthermore, they should appreciate the limits and constraints of the respective tools and
methods that make them suitable approaches in specific scenarios.

Students should be able to formalize and generalize their own solutions for retrieval problems using the above
theories and methods.

Students should master concepts and approaches such as

• freshness vs. age as crawling update policies
• stopping and stemming to reduce index sizes vs. store everything approaches
• authority ranking approaches such as PageRank
• delta encoding and skip pointes for efficient small indexes
• the similarity and importance of tf-components in BM25 and query likelihood retrieval models
• pooling strategies in search result evaluation
• precision vs. recall in effectiveness evaluations

to tackle search and retrieval problems and their application to digital media. They should be able to understand
typical problems faced when developing retrieval systems, to compare different approaches suited to the
different components of such systems, to make well-informed decisions about the preferred approach and, if
necessary, to find their own solutions to given retrieval and search problems.

Students should develop an understanding of the current state of research in web search and information
retrieval. With appropriate supervision, students should also be able to tackle research problems.

Contents • Introduction
• Architecture of a Search Engine
• Crawling, Parsing, Information Extraction
• Inverted Indexes and Index Compression
• Query Processing
• Retrieval Models

Special information Course material: https://lecturenotes.webis.de/#information-retrieval
Literature:

• R. Baeza-Yates, B. Ribeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind
Search

• C.D. Manning, P. Raghavan, H. Schütze. Introduction to Information Retrieval
• S. Büttcher, C.L.A. Clarke, G.V. Cormack. Information Retrieval: Implementing and Evaluating Search

Engines

https://lecturenotes.webis.de/#information-retrieval

